Random death process for the regularization of subdiffusive fractional equations.
نویسندگان
چکیده
The description of subdiffusive transport in complex media by fractional equations with a constant anomalous exponent is not robust where the stationary distribution is concerned. The Gibbs-Boltzmann distribution is radically changed by even small spatial perturbations to the anomalous exponent [S. Fedotov and S. Falconer, Phys. Rev. E 85, 031132 (2012)]. To rectify this problem we propose the inclusion of the random death process in the random walk scheme, which is quite natural for biological applications including morphogen gradient formation. From this, we arrive at the modified fractional master equation and analyze its asymptotic behavior, both analytically and by Monte Carlo simulation. We show that this equation is structurally stable against spatial variations of the anomalous exponent. We find that the stationary flux of the particles has a Markovian form with rate functions depending on the anomalous rate functions, the death rate, and the anomalous exponent. Additionally, in the continuous limit we arrive at an advection-diffusion equation where advection and diffusion coefficients depend on both the death rate and anomalous exponent.
منابع مشابه
Random death process for the regularization of subdiffusive anomalous equations
Subdiffusive fractional equations are not structurally stable with respect to spatial perturbations to the anomalous exponent (Phys. Rev. E 85, 031132 (2012)). The question arises of applicability of these fractional equations to model real world phenomena. To rectify this problem we propose the inclusion of the random death process into the random walk scheme from which we arrive at the modifi...
متن کاملFractional Reaction-transport Equations Arising from Evanescent Continuous Time Random Walks
Continuous time random walks (CTRWs) describe a particular class of renewal processes used to model a wide variety of phenomena such as the motion of charge carriers in disordered systems, the dynamics of financial markets, the motion of diffusing particles in crowded environments, and certain anomalous relaxation phenomena in dielectric systems. It is well known that, on long time scales, a CT...
متن کاملNonlinear subdiffusive fractional equations and the aggregation phenomenon.
In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce the random walk model in which statistical characteristics of a random walker such as escape rate and jump distribution depend on the mean density of particles. We derive a set of nonlinear subdiffusive fractional master equations and consider their diffusion approximations. We show that ...
متن کاملFractional Calculus and Morphogen Gradient Formation
Some microscopic models for reactive systems where the reaction kinetics is limited by subdiffusion are described by means of reaction-subdiffusion equations where fractional derivatives play a key role. In particular, we consider subdiffusive particles described by means of a Continuous Time Random Walk (CTRW) model subject to a linear (first-order) death process. The resulting fractional equa...
متن کاملSubdiffusive master equation with space-dependent anomalous exponent and structural instability.
We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not structurally stable with respect to the nonhomogeneous variations of paramet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 5 شماره
صفحات -
تاریخ انتشار 2013